葡京娱乐场在线赌场

葡京娱乐场在线赌场
葡京娱乐场概况
葡京娱乐场简介
院长致辞
领导团队
历史沿革
师资队伍
教职人员
实验室人员
科学研究
研究团队
研究进展
支撑平台
人才培养
本科生教育
研究生教育
党团工作
党建工作
团建工作
教师风采
校友寄语
招生录取
本科生招生
研究生招生
暑期研学营
国际交流
交流访问
学术会议
最新动态
学术讲座
通知公告
综合新闻
葡京娱乐场在线赌场
邮箱登录

王伟民教授课题组与合作者提出:电子束驱动强场QED效应及其产生的稠密极化正电子束

2024-06-18


近日,中国人民大学王伟民教授与浙江大学朱兴龙研究员、上海交通大学盛政明教授联合团队报道了强场量子电动力学QED研究方面的最新进展,在国际上首次发现了通过电子束直接驱动固体靶高效激发多光子Breit-WheelerBW)过程以及由此产生稠密极化正电子束的物理现象,揭示了QED场强下束靶相互作用新机制,为高能极化正电子源的发展及应用研究奠定了基础。该研究成果以“Dense polarized positrons from beam-solid interaction”为题发表在Physical Review Letters上。


研究背景

高能正电子产生不仅是强场QED物理中最重要的过程之一,而且在诸多研究领域中起着至关重要的作用。特别是,当高能正电子束携带高自旋极化度时,可以应用于探索一些基本的物理问题,例如寻找超标准模型新物理、探测核子结构以及理解一些极端的天体物理现象。尽管高密度高能量的极化正电子可能广泛地存在于一些高能天体物理环境中,但是它们很难在实验室中获得。


研究创新点

研究团队在国际上首次发现了相对论非极化电子束与固体结构靶相互作用产生稠密极化GeV正电子的新物理方案。电子束首先经过一个小角度的空心锥型靶(充当聚焦器)诱导强烈的磁聚焦,使其密度提高约两个数量级;电子束聚焦到近固体密度范畴,这对触发强场QED过程是至关重要的,如此高密度电子束是当代加速器或其他技术方法所不能直接实现的。随后,聚焦的高密度电子束直接入射到一个固体靶表面(充当转换器)激发多光子BW过程产生稠密正电子,如图1所示。

1. (a)物理方案原理图,包括电子束聚焦和正电子产生(b)稠密极化正电子产生机制图


高密度电子束撞击固体表面时,其将引起超强的等离子体电子回流,从而靶表面产生对称强磁场。在此强磁场中电子束将发生进一步聚焦作用,同时将靶内的磁场强度进一步放大到兆特斯拉以上。相对论电子在此高强度准静态磁场作用下可以有效触发多光子BW过程产生大量高能稠密正电子。另一方面,该磁场在等离子体内与真空中是不对称的,产生的正电子主要位于靶内侧,其经历着单极强磁场,通过辐射自旋翻转效应获得高极化度。此外,由于洛伦兹力的作用,在靶内产生的正电子将沿着-y方向偏离,而在靶外产生的正电子将沿着+y方向偏离最终,产生两团自旋方向相反的高极化稠密GeV正电子束。研究表明,获得的正电子能量转化效率可达108/J,驱动电子与正电子的产率比达到0.3e+/e-,这是目前其他方法所难以达到的。这得益于驱动束激发强作用场的同时,其自身始终处于最强场区域,直至能量耗尽为止,是一种自持的高效作用机制。与之相比,高强度激光作用构型中往往取决于激光脉宽(即约为10fs尺度)产生的极化正电子能量转化效率一般不超过104/J因此,该研究是目前产生稠密极化正电子最高效的方法。


总结与展望

该工作首次报道了一种高效、简洁的方法,在不采用高强度激光的情况下,通过高能电子束驱动固体靶直接激发多光子BW过程并产生高极化稠密正电子束揭示了QED场强下新的束靶作用机制。获得的正电子束电量可达纳库级、平均极化度高达40%以上。电子束在靶表面诱导准静态强磁场具有天然不对称由此引起的正电子自旋极化机制是稳健的。研究表明进一步增加驱动束电量或能量,可以产生更多的极化正电子。该研究为高能极化正电子源的产生和应用研究提供了新途径


浙江大学葡京娱乐场在线赌场 朱兴龙研究员为该论文的第一作者兼通讯作者,中国人民大学王伟教授上海交通大学盛政明教授为共同通讯作者,合作者包括陈民教授、余同普教授、翁苏明教授和刘维媛博士。该工作得到了国家自然科学基金、中国人民大学教授启动基金(20XNLG01)等项目的资助


论文链接:Xing-Long Zhu*, Wei-Yuan Liu, Tong-Pu Yu, Min Chen, Su-Ming Weng, Wei-Min Wang*, and Zheng-Ming Sheng*, “Dense Polarized Positrons from Beam-Solid Interaction”, Phys. Rev. Lett. 132, 235001 (2024). //journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.235001


相关推荐
读取内容中,请等待...